DOI: http://dx.doi.org/10.18782/2320-7051.6455

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6 (2):** 1615-1622 (2018)

Response of Rice Genotypes to Levels of Seed Rates and Micronutrients under Drill Sown Condition during Summer in Tunga Bhadra Project Irrigation Command During Summer Season

Shubha, G. V.^{*}, B. M. Chittapur, Halepyati, A. S. and Veeresh, H.

Pig Breeding Unit, Kudige, Kodagu, Karnataka, India *Corresponding Author E-mail: agshubha@gmail.com Received: 10.03.2018 | Revised: 17.04.2018 | Accepted: 23.04.2018

ABSTRACT

The field experiment conducted to assess the performance of rice genotypes (GGV 0501, RNR 15048 and BPT 5204) to levels of seed rates (25, 30 and 35 kg ha⁻¹) and micronutrients (control, FeSO₄ (Soil @ 25 kg ha⁻¹ + foliar @ 0.5% twice at 15 and 30 DAS, ZnSO₄ (Soil @ 25 kg ha⁻¹ + foliar @ 0.5% twice at 15 and 30 DAS, FeSO₄ + ZnSO₄ (each to soil @ 25 kg ha⁻¹ + foliar @ 0.5% at 15 and 30 DAS) under drill sown conditions in Tunga Bhadra project irrigation command during summer revealed significantly higher dry matter accumulation in leaves, stem and panicle (17.9, 39.2 and 50.1 g plant⁻¹, respectively) in cv. GGV 0501 with medium seed rate of 30 kg ha⁻¹ and application of FeSO₄ and ZnSO₄ both to soil and to the foliage. Similar was the trend in yield components (panicles m⁻² - 411.5, grains panicles⁻¹ - 156.9, and test weight - 27.6g). Consequently grain (6277 kg ha⁻¹) and straw (8241 kg ha⁻¹) yields were higher with the treatment closely followed by same cultivar and seed rate but supplied with ZnSO₄ only, while the lowest grain yield (3513 kg ha⁻¹) was recorded with cv. RNR 15048 sown using 25 kg ha⁻¹ seed rate and supplied with no micronutrient.

Key words: Genotypes, Seed rates, Micronutrients, Direct seeded rice, Dry matter, Yield

INTRODUCTION

Rice is the most important and widely cultivated staple crop in the world, Asia is the home of rice and more than two billion people are getting 60-70 per cent of their energy requirement from rice and its derived products (Rekha *et al.*, 2015). Rice cultivation differs in different ecosystems depending upon resource availability particularly water; though transplanting which is being done after puddling the field is a common practice in most of irrigated areas in the world. Due to resource constraints, especially water and labourers, direct seeding of rice under dry (drill sown rice-DSR) condition is now the emerging trend in rice cultivation. However, production often is handicapped by lack of availability of suitable production technologies. Evolving new cultivars and their testing for adoptability and productivity in different agro-ecological regions is fundamental for good harvests.

Cite this article: Shubha, G.V., Chittapur, B.M., Halepyati, A.S. and Veeresh, H., Response of Rice Genotypes to Levels of Seed Rates and Micronutrients under Drill Sown Condition during Summer in Tunga Bhadra Project Irrigation Command During Summer Season, *Int. J. Pure App. Biosci.* **6(2):** 1615-1622 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6455

Shubha *et al*

ISSN: 2320 - 7051

Besides, a cultivar cannot produce to its potential unless it is established in optimum stand density and provided with enough nutrition particularly the micronutrients which are critical in DSR as the aerobic condition prevailing initially make crop suffer from deficiencies of Fe and Zn which limit production under DSR. These nutrients especially in rice play critical role in plant such as respiration, protein processes synthesis, reproduction phase and thereby affect grain yield. Therefore, to realize the maximum production potential, it is essential to develop suitable package of agronomic practices for successful cultivation DSR. Tunga Bhadra project (TBP) irrigation command is one important rice growing region in Karnataka with highest rice acreage both during rainy season and summer and water scarcity because of volatile monsoon and in the tail end region with farmers obsessed with rice forcing them to switch over to DSR. This welcome change warrants agricultural technologists to work on crop agronomy. With this background field experiment was carried out to identify suitable cultivars, optimum seed and need. time and method of rate micronutrient application for DSR rice during summer in the TBP irrigation command.

MATERIAL AND METHODS

The experiment was conducted during the summer 2016 at Agriculture Research Station, Dhadesugur, UAS, Raichur, Bellary, Karnataka representing Northern dry zone of the state, receiving water from Tunga Bhadra river for irrigation. Geographically it is located at 15° 6 North lattitude, longitude of 76° 8 East and at an elevation of 358 meters above mean sea level. The soil was neutral in reaction (7.21), relatively high in soluble salts (1.07 dS m^{-1}) , medium in organic carbon (0.62%), available nitrogen (285.1 kg ha⁻¹) and $P_{2}O_{5}$ (23.4 kg ha⁻¹) and high in K₂O (440.9 kg ha⁻¹), while it was medium in exchangeable calcium (1124 mg kg⁻¹) and high in magnesium content (216.0 mg kg⁻¹). The DTPA extractable micronutrient content revealed deficiency of zinc $(0.49 \text{ mg kg}^{-1})$ and Copyright © March-April, 2018; IJPAB

iron (4.41 mg kg⁻¹). The experiment was laid out in a Split split plot design keeping cultivars in main plots (V1- Gangavathi sona (GGV 05 01), V₂- RNR 15048 and V₃- BPT 5204), seed rates in sub plots (S_1 - 25 kg ha⁻¹, S_2 - 30 kg ha⁻¹ ¹and S_3 - 35 kg ha⁻¹), and levels of micro nutrients in sub-sub plot (M1- Control (no micronutrients), M₂- FeSO₄ (Soil application @ 25 kg ha⁻¹+ foliar application @ 0.5% twice at 15 and 30 DAS), M₃- ZnSO₄ (Soil application @ 25 kg ha^{-1} + foliar application @ 0.5% twice at 15 and 30 DAS) and M_4 - M_2 + M₃). Normal crop husbandry practices such as row distance, NPK fertilization, irrigation and prophylactic measures were adopted for raising the crop. The data on growth and yield components and yield were obtained following scientific procedures and subjected to statistical analysis at five percent level of significance and interpreted⁴.

RESULTS AND DISCUSSION

Dry matter accumulation: Significantly higher dry matter accumulation (DMA) in leaves, stem and panicles per plant were obtained with the cv. GGV 0501 (13.6, 34.0 and 41.4 g plant⁻¹, respectively) across other factors. Similarly, medium seed rate at 30 kg ha⁻¹ recorded significantly higher dry matter accumulation in leaves, stem and panicles $(13.2, 32.3 \text{ and } 35.2 \text{ g plant}^{-1}, \text{ respectively})$ over lower or higher seed rates (Table 1). Earlier,¹¹ working with hybrids reported the maximum dry matter accumulation with hybrid cultivar DRRH 3 and PAC 837, but with higher seed rate of 35 kg ha⁻¹ which with further rise in seed rate of 45 kg ha⁻¹ declined. This is acceptable because these are coarse cultivars while in the present investigation fine to medium fine rice cultivars were used.

Further, combined application of $ZnSO_4$ and $FeSO_4$ to the soil and to the foliage recorded significantly higher dry matter accumulation in leaves, stem and panicle (14.6, 36.6 and 37.4 g plant⁻¹) (Table 1). In the present investigation soil being deficient in Fe and Zn and DSR being sensitive to these nutrients beneficial effects were on the expected line. Besides, their involvement in

plant physiological process and their specific role particularly of Zn in enhancing the transfer of photosynthates from shoot to grain⁹ probably helped in greater accumulation of DM in these plant parts.

Overall, the three way interactions also revealed significant differences in dry matter accumulation (Table 1). Significantly higher DMA in leaves, stem and panicles was recorded with cv. GGV 0501 at medium seed rate of 30 kg ha⁻¹ and with application of both ZnSO₄ and FeSO₄ to the soil and to the foliage closely followed by application of zinc sulphate (Table 1). That means, both nutrients being deficient in the rhizosphere need supplementation to soil as well as to the foliage to ensure their adequate availability, and of the two micronutrients zinc appears more critical as regards to individual role in augmenting growth process to achieve crop potential. Importance of Zn and Fe lies in the fact that these are involved in the synthesis of growth promoting hormones and the reproduction process of many plants which are vital in grain formation⁷.

Yield components: Significantly higher panicles m⁻², number of grains panicle⁻¹ and test weight (328.2, 118.5 and 24.4 g, respectively) were recorded with cv. GGV 0501 (V_1) (Table 2). Among seed rates, seed rate of 30 kg ha⁻¹ (S_2) recorded significantly higher panicles m⁻², number of grains panicle⁻¹ and test weight (307.5, 108.4 and 22.2 g, respectively). Gill et al. (2006) also reported maximum grains panicle⁻¹ with low seed rate of 25 kg ha⁻¹ irrespective of the methods of sowing compared to higher seed rate of 50 and 75 kg ha⁻¹. That is higher the seed rate lower will be the grain load per panicle. Similarly, combined application FeSO₄ + ZnSO₄ to soil and to the foliage resulted in higher panicles m^{-2} , number of grains panicle⁻¹ and test weight (337.6, 125.6 and 22.4 g, respectively). The results are in line with those of Cheema et al.¹ who observed more paddy grain due more number of spikelet and lesser spikelet sterility with application of 10 kg ZnSO₄ ha⁻¹ produced.

Further, the three way interaction revealed significantly higher panicles m^{-2} , number of grains panicle⁻¹ and test weight (411.5, 156.9 and 27.6g, respectively) with cv. GGV 0501 sown using 30 kg seed rate and applied with both FeSO₄ and ZnSO₄ (V₁S₂M₄). These responses confirm the findings of Gill and Walia² who reported significant improvement in growth and yield attributes with foliar sprays of micronutrients.

Yield: Cv. GGV 0501 recorded higher grain vield (5524 kg ha⁻¹) than cvs. RNR 15048 (4429 kg ha⁻¹) and BPT 5204 (4270 kg ha⁻¹) and the improvements in yield with cv. GGV 0501 over cvs. RNR 15048 and BPT 5204 were to the tune of 24.7 and 29.4 per cent, respectively (Table 3). Again, similar was the trend in straw yield (6409, 6269 and 5767 kg ha⁻¹ with GGV 0501, RNR 15048 and BPT 5204, respectively). A medium seed rate of 30 kg ha⁻¹ across cultivars and levels of micronutrients fared better with higher grain $(4984 \text{ kg ha}^{-1})$ and straw yields $(6301 \text{ kg ha}^{-1})$ (Table 2). Similarly in China, Wu et al.¹⁰ found a seed rate of 20-25 kg ha⁻¹as optimum for DSR under zero till condition (ZT-dry-DSR). In the Indo-Gangetic plain, also a seed rate of 20-25 kg ha⁻¹ was found optimum for medium fine grain rice cultivars⁵. Combined application of FeSO₄ and ZnSO₄ both basally to the soil and subsequently to the foliage recorded high grain and straw yields (5185 and 7164 kg ha⁻¹, respectively, Table 3). The results corroborate well with Jadhav et al.⁶ who also obtained significantly higher yields with combined application of FeSO₄ and $ZnSO_4$ at 10 kg ha⁻¹ each. This improvement in yield could be traced back improvement in growth and yield components with the treatments discussed previously (Table 1 and 2) where similar trend prevailed among the different factors and their levels.

Interactions due to variety and seed rate were significant and among them cv. GGV 0501 sown using 30 kg ha⁻¹seed rate (V_1S_2) recorded higher grain and straw yields (5912 and 7351 kg ha⁻¹, respectively), while lower grain and straw yields among all was recorded with cv. BPT 5204 irrespective of

Shubha *et al*

seed rates used (Table 3). Yadav et al.¹¹ obtained higher yield of hybrid cultivars DRRH-3 and PAC 837 with higher seed rate of 35 kg ha⁻¹ under aerobic cultivation, and cultivars being coarse with bold grains higher seed rate could be expected unlike the cultivars used in present study. Variety X also revealed significant micronutrient variations, in that cv. GGV 0501 with combined application of FeSO₄ and ZnSO₄ (V_1M_4) recorded higher grain and straw yields (6029 and 7373 kg ha⁻¹, respectively) and in the absence of micronutrient application yield decreased irrespective of cultivars used and recorded lower grain yield with cv. RNR 15048 (V_2M_1 - 3779 kg ha⁻¹) and straw yield with cv. BPT 5204 (V_3M_1 - 4614 kg ha⁻¹). Similarly, interactions due to micronutrients and seed rates were significant wherein 30 kg seed rate with the application of FeSO₄ + $ZnSO_4$ (S₂M₄) recorded higher grain and straw yields (5419 and 7631 kg ha⁻¹, respectively) while 25 and 35 kg ha⁻¹ seed rate without supplementation of micronutrient $(S_{1\&3}M_1)$ recorded lower grain and straw vields.

The three factor combination revealed significantly higher grain and straw yields (6277 and 8241 kg ha⁻¹, respectively) with cv. GGV 0501 sown using 30 kg seed rate and supplied with both $FeSO_4$ and $ZnSO_4$ $(V_1S_2M_4)$, closely followed by same cultivar and seed rate but supplied with ZnSO₄ $(V_1S_2M_3)$, while the lowest grain yield (3513) kg ha⁻¹) was recorded with cv. RNR 15048 sown using 25 kg ha⁻¹ seed rate and supplied with no micronutrient $(V_2S_1M_1)$, and BPT 5204 sown using 25 kg ha⁻¹ without any micronutrient supply $(V_3S_1M_1)$ recorded significantly lower straw yield (4131 kg ha⁻¹) among all (Table 3). Similarly, in a study carried out at Ludhiana using Bhasmati cultivar, Gill and Walia² obtained higher yield with foliar nutrition of FeSO₄ in combination with MnSO₄, unlike ZnSO4 as found in the present study probably for the reason that for that soil and cultivar, a scented rice, Mn is critical along with FeSO₄.

Harvest index (HI) varied significantly due to cultivars, micronutrients and their

interaction except seed rates. Among all cv. GGV 0501 (V_1) recorded significantly higher HI (0.46), while the other two cultivars were at par (V_2 - 0.41 and V_3 - 0.42). Similarly, use of micronutrients produced significant variations individually and no application of micronutrient (M_1) recorded significantly higher HI (0.45) and was on par with application of FeSO₄ to soil and to the foliage, while significantly lower (0.41) HI was recorded in combined application of FeSO4 + ZnSO₄. Interactions due to variety and seed rate were significant. GGV 0501 at 25 kg ha⁻¹ seed rate (V_1S_1) recorded higher HI (0.48), while lower (0.39) HI was recorded with cv. RNR 15048 with seed rate of 35 kg ha⁻¹ (V_2S_1) . Variety X micronutrient also revealed significant variations, in that cv. GGV 0501 with all levels of micronutrients and cv. BPT 5204 without application of micronutrient higher HI (0.47). recorded Combined application $FeSO_4 + ZnSO_4$ to soil and to the foliage in cv. BPT 5204 (V₃M₁) recorded lower HI (0.39).

Similarly, interactions due to micronutrients and seed rates were significant wherein 30 kg seed rate without any micronutrient (S_2M_1) recorded higher HI (0.46), while S_2M_4 with 30 kg ha⁻¹ seed rate and $FeSO_4 + ZnSO_4$ (S₂M₄) recorded lower HI (0.41). Of the three way interactions, significantly higher HI (0.50) was observed with cv. BPT 5204 sown with 35 kg seed rate without application of micronutrients $(V_3S_3M_1)$ while lower harvest index (0.36) was recorded with cv. RNR 15048 sown using 35 kg ha⁻¹ seed rate and supplied with FeSO₄ micronutrient $(V_2S_3M_2)$ among all (Table 3). Moderate HI with high performing treatment cv. GGV 0501 sown using 30 kg ha⁻¹ seed rate and supplied with both the micronutrient could be attributed to relative large accumulation of dry matter in vegetative parts in comparison to low performing treatment combination. In other words optimum seed rate and supply of micronutrient helped in attaining better plant architecture are evidenced in the study.

Shubha *et al*

Int. J. Pure App. Biosci. 6 (2): 1615-1622 (2018)

ISSN: 2320 - 7051

Thus, the study reveals better revenue with cv. GGV 0501 sown using 25 kg ha⁻¹ seed rate and supplied with FeSO₄ and ZnSO₄ basally to soil

(25 kg ha⁻¹ each) and subsequently to foliage (each @ 0.5% twice at 15 and 30 DAS) during summer in TBP irrigation command.

Table 1: Effect of rice genotypes, seed rates and micronutrients on dry matter accumulation in different
parts of ice plant (g plant ⁻¹) under direct seeded condition during summer

VvSvM			Lea	aves			Ste	em		Panicles				
VAC	5 X IVI	\mathbf{V}_1	\mathbf{V}_2	V_3	S x M	\mathbf{V}_1	\mathbf{V}_2	V_3	S x M	\mathbf{V}_1	\mathbf{V}_2	V_3	S x M	
	M_1	8.4 ^{j-1}	5.7 ^m	5.8 ^m	6.6 ^g	26.7 ^{g-j}	38.8 ^{ab}	21.4 ^k	29.0 ^{ef}	28.1 ^{g-i}	20.1 kl	23.5 ^{i-k}	23.9 ^f	
~	M_2	$10.0^{h\text{-}j}$	9.8 ^{i-k}	7.7 ^{k-m}	9.2 ^{ef}	$29.4^{\rm \ f\text{-}i}$	26.7 ^{g-j}	24.1 ^{h-j}	23.4 ^e	35.7 ^{d-g}	22.6 ^{j-1}	22.3 ^{j-1}	29.1 °	
\mathbf{S}_1	M_3	13.9 ^{c-f}	$11.8^{\mathrm{f}\text{-}\mathrm{i}}$	10.7 ^{g-i}	12.1 °	31.5 ^{c-g}	31.5 ^{c-g}	26.5 ^{g-j}	29.8 ^d	45.8 ^{a-c}	27.3 ^{h-k}	29.7 ^{f-j}	34.3 ^{b-d}	
	M_4	14.3 ^{с-е}	12.7 ^{d-g}	10.8 ^{g-i}	12.6 ^{bc}	36.4 ^{a-e}	33.3 ^{a-f}	32.1 ^{b-g}	33.9 ^{bc}	45.8 ^{a-c}	31.1 ^{e-i}	28.0 ^{g-j}	34.9 ^{b-d}	
G	\mathbf{M}_{1}	12.8 ^{d-g}	5.7 ^m	$11.8^{\rm \ f-i}$	10.1 ^{de}	26.7 ^{g-j}	21.8 ^{jk}	16.7 ^k	21.7 ^f	37.3 ^{d-f}	32.2 ^{d-h}	15.8 ¹	28.4 °	
	M_2	15.7 ^{bc}	10.7 ^{g-i}	12.3 ^{e-h}	12.9 ^{bc}	37.1 ^{a-c}	36.3 ^{a-e}	27.2 ^{f-j}	33.5 ^{bc}	44.8 ^{a-c}	33.8 ^{d-h}	22.3 ^{j-1}	33.6 ^{ce}	
S_2	M_3	17.1 ^{ab}	11.7^{f-i}	12.7 ^{d-g}	13.8 ^b	39.1 ^a	37.5 ^{a-c}	30.4 ^{e-g}	35.7 ^{ab}	49.7 ^a	34.1 ^{d-h}	29.7 ^{f-j}	37.9 ^{ab}	
	M_4	17.9 ^a	15.7 ^{bc}	14.3 ^{с-е}	16.0 ^a	39.2 ^a	38.2 ^{ab}	37.1 ^{a-c}	38.2 ^a	50.1 ^a	40.0 ^{b-d}	32.d-h	40.8 ^a	
	M_1	10.1 ^{h-j}	7.8 ^{k-m}	6.5^{lm}	8.1 ^f	29.4^{f-i}	26.7 ^{g-j}	21.5 ^{jk}	25.9 ^e	35.7 ^{d-g}	29.7 ^{f-j}	28.0 ^{g-j}	31.1 ^{de}	
a	M_2	10.3 ^{h-j}	11.1 ^{g-i}	10.7 ^{g-i}	10.7 ^d	36.5 ^{a-d}	30.7 ^{d-g}	27.1 ^{g-j}	31.4 ^{cd}	37.6 ^{de}	$29.7 \ ^{\rm f-j}$	28.1 ^{g-j}	31.8 ^{de}	
S ₃	M_3	14.5 ^{с-е}	12.7 ^{d-g}	11.2 ^{g-i}	12.8 ^{bc}	37.7 ^{ab}	$29.3^{\mathrm{f}\text{-}\mathrm{i}}$	30.2 ^{f-h}	32.4 ^{cd}	39.0 ^{cd}	32.2 ^{d-h}	29.4 ^{f-j}	33.5 ^{cd}	
	M_4	17.7 ^{ab}	14.8 ^{cd}	12.8 ^{d-g}	15.1 ^ª	38.5 ^{ab}	37.7 ^{ab}	36.3 ^{a-e}	37.5 ^a	47.2 ^{ab}	32.2 ^{d-h}	29.7 ^{f-j}	36.4 ^{bc}	
Variety		13.6 ^a	10.9 ^b	10.6 ^b		34.0 ^a	31.5 ^b	27.6 °		41.4 ^a	30.4 ^b	26.6 °		
		Variety	x Seed rate		S	Variety x Seed rate S				Var	S			
	S_1	11.7 °	$10.0^{\rm f}$	8.8 ^g	10.2 °	31.0 ^{bc}	30.1 de	26.1 ^e	29.1 ^b	38.7 ^b	25.3 °	27.7 ^{de}	30.6 °	
S	S_2	15.9 ^a	10.9 ^{de}	12.8 ^b	13.2 ^a	35.6 ^a	33.5 ^{ab}	27.9 ^{de}	32.3 ^a	45.5 ^a	35.0 °	25.0 ^e	35.2 ^a	
	S_3	13.1 ^b	11.6 ^{cd}	10.3 ^{ef}	11.7 ^b	35.6 ^a	31.1 ^{bc}	28.8 ^{cd}	31.8 ^{ab}	39.9 ^b	30.9 ^d	28.8 ^d	33.2 ^b	
		Variety	y x Micro		М	Variety x Micro M			М	Va	М			
	M_1	10.4 de	6.4 ^g	8.1 ^f	8.3 ^d	27.6 ^{ef}	29.1 ^g	19.9 ^h	25.5 ^d	33.7 ^{cd}	27.3 ^{ef}	22.4 ^g	27.8 °	
	M_2	12.0 °	10.5 de	10.2 ^e	10.9 °	34.4 ^{bc}	27.9 ^{de}	26.2 ^{eg}	29.5 °	39.1 ^b	28.7 ^{ef}	$26.7^{\rm f}$	31.5 ^b	
М	M_3	15.2 ^b	12.1 °	11.5 ^{cd}	12.9 ^b	36.1 ^{ab}	32.8 ^{cd}	29.1 ^{ef}	32.7 ^b	44.8 ^a	31.2 ^{a-e}	29.6 ^{d-f}	35.2 ^a	
	M_4	16.6 ^a	14.4 ^b	12.7 °	14.6 ^ª	38.1 ^a	36.4 ^{ab}	35.2 ^{a-c}	36.6 ^a	47.7 ^a	34.4 °	$30.0^{d\text{-f}}$	37.4 ^ª	
Compa	rison		S.F	Cm±			S.E	m±		S.Em±				
Variety	7 (V)		0	0.1		0.6				0.7				
Seed (S)		0	0.1		0.4				0.6				
Micro ((M)		0	.2		0.7				0.8				
V x S			0	.2		0.8				1.0				
V x M			0	.4			1	.2			1.3			
S x M			0	.4			1	.2			1.3			
V x S x M			0	.7			2	.2		2.3				

Varieties (V) : V₁- GGV 0501, V₂- RNR15048, V₃- BPT 5204

Seed Rate(S) : $S_{1-} 25 \text{ kg ha}^{-1}$, $S_{2-} 30 \text{ kg ha}^{-1}$, $S_{3-} 35 \text{ kg ha}^{-1}$

Micronutrient (M): M₁- Control, M₂- FeSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_3 - ZnSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_{4} - FeSO₄ + ZnSO₄ (each to soil @ 25 kg ha⁻¹ + foliar @ 0.5% at 15 and 30 DAS)

Note: The values between the same set of classes for each treatment followed by the same letter are not significantly different under DMRT

V₁ V_2 V_3 S x M 297.9^{d-k} 223 ^{j-m} 241.2^f $202.7^{\ m}$

329.2^{b-g} 217.3^{k-m} 234.7^{i-m}

Panicles m⁻²

N1 348.4* 250.3*m 250.9*m 284.9*c 129.0 ^{4m} 133.3 ^{bc} 68.4 ^{pr} 110.2*c 23.4 st 18.5 st 20.5 ^{c+f} 20.8 ^{bb} M1 378.2 ^{s+d} 273.9 ¹¹ 259.7 sm 303.9 ^{bd} 133.5 ^{bc} 130.9 ^{bd} 76.6 ^{s+q} 113.7 ^{bc} 24.7 ^{se} 19.2 ^{c+f} 20.6 ^{b+f} 21.5 ^{sb} 20.6 ^{b+f} 21.5 ^{sb} 20.6 ^{b+f} 21.5 ^{sb} 20.6 ^{b+f} 21.5 ^{sb} 20.0 ^{c+f} 18.6 st 21.5 ^{sb} 20.0 ^{c+f} 18.6 st 21.5 ^{sb} 20.9 ^{c+f} 20.6 ^{b+f} 23.8 ^{c+f} 20.7 ^{c+f} 22.7 ^{c+f} 20.9 ^{c+f} 20.6 ^{c+f} 18.6 st 21.5 ^{sb} 20.9 ^{c+f} 20.7 ^{c+f} 22.8 ^{c+f} 21.8 ^{c+f} 21.5 ^{sb} 20.9 ^{s+f} 20.9 ^{s+f} 20.7 ^{c+f} 22.8 ^{c+f} 21.8 ^{c+f} 23.3 ^s 16.9 ^f 18.5 ^{sf} 20.6 ^{sf} 21.1 ^{sf} 23.3 ^s 16.9 ^f 18.5 ^{sf} 20.9 ^{sf} 20.7 ^{c+f} 22.2 ^{sf} 19.9 ^{cf} 20.5 ^{cf} 20.8 ^{sf} 23.8 ^s 16.9 ^f 18.5 ^{sf} 20.5 ^{cf} 20.8 ^{sf} 23.8 ^{sf} 16.9 ^f 18.5 ^{sf} 20.5 ^{cf} 20.5 ^{cf} 20.5 ^{cf} 20.5 ^{sf}	S.	1112	329.2 -	217.5	234.7	200.4	121.5 -	01.9	01.7	97.0	23.0	17.7	19.5	20.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	51	M_3	348.4 ^{a-f}	256.3 ^{g-m}	$250^{\text{g-m}}$	284.9 ^{c-e}	129.0 ^{f-e}	133.3 ^{bc}	68.4 ^{p-r}	110.2 ^c	23.4 ^{a-f}	18.5 ^{ef}	20.5 ^{c-f}	20.8 ^{ab}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		M_4	378.2 ^{a-d}	$273.9^{\rm f-l}$	259.7 ^{g-m}	303.9 ^{b-d}	133.5 ^{bc}	130.9 ^{b-d}	76.6 ^{n-q}	113.7 ^{bc}	24.7 ^{a-e}	19.2 ^{c-f}	$20.6^{\mathrm{b}\text{-f}}$	21.5 ^{ab}
S2 M2 305.7 s ⁻¹ 292.0 s ^{+k} 269.8 s ⁻¹ 289.2 s ⁻¹ 10.5 s ⁻¹ 109.1 s ^{+k} 72.4 s ⁻ⁿ 97.3 d 25.7 s ^{-c} 20.3 s ⁻¹ 18.6 s ⁻¹ 21.1 s ⁻¹ 22.8 s ⁻¹ M4 411.5 s ⁻¹ 389.2 s ⁻¹ 310.1 b ⁻¹ 370.3 s ⁻¹ 156.9 s ⁻¹ 143.0 s ⁻¹ 27.6 s ⁻¹ 21.1 s ⁻¹ 21.1 s ⁻¹ 22.8 s ⁻¹ M4 243.4 b ^{-m} 266 c ^{-m} 186.3 m 23.1 9 t ⁻¹ 107.7 s ^{-k} 80.1 m ^{-p} 84.5 b ^{-p} 90.8 s ⁻¹ 19.9 s ⁻¹ 22.2 s ⁻¹ 19.9 s ⁻¹ 20.5 s ⁻¹ 20.9 s ⁻¹ 23.7 s ⁻¹ 19.6 s ⁻¹ 23.1 s ⁻¹ 23.7 s ⁻¹ 19.6 s ⁻¹ 23.1 s ⁻¹ 23.7 s ⁻¹ 19.6 s ⁻¹ 23.1 s ⁻¹ 23.6 s ⁻¹ 23.2 s ⁻¹ 23.5 s ⁻¹ 23.4 s ⁻¹ <t< th=""><th></th><th>\mathbf{M}_{1}</th><th>259.1 ^{g-m}</th><th>287.5^{f-k}</th><th>264^{f-m}</th><th>$270.2^{d\text{-}f}$</th><th>99.0^{h-1}</th><th>85.8^{1-p}</th><th>61.6^{qr}</th><th>82.1^{ef}</th><th>25.6^{a-d}</th><th>19.7 ^{c-f}</th><th>17.7^{ef}</th><th>21.0^{ab}</th></t<>		\mathbf{M}_{1}	259.1 ^{g-m}	287.5 ^{f-k}	264 ^{f-m}	$270.2^{d\text{-}f}$	99.0 ^{h-1}	85.8 ^{1-p}	61.6 ^{qr}	82.1 ^{ef}	25.6 ^{a-d}	19.7 ^{c-f}	17.7 ^{ef}	21.0 ^{ab}
S2 M3 321.2 bb 299.7 db 280.3 fb 300.4 fd 128.1 bf 111.7 vi 92.6 ka 110.8 bc 27.5 bb 20.9 vf 20.1 vf 22.8 a M4 411.5 a 389.2 ab 310.1 bi 370.3 a 156.9 a 143.0 ab 129.0 bc 143.0 ab 21.1 vf 21.1 vf 21.1 vf 21.1 vf 23.3 a M1 243.4 bm 266 cm 186.3 n 231.9 f 107.7 vk 80.1 mp 84.5 br 90.8 db 21.2 vf 18.0 vf 16.9 f 18.7 b M3 372 vc 299.3 db 303.7 vi 325.0 v 113.2 db 89.9 bo 94.1 in 91.4 d 23.7 vf 20.5 vf 20.9 vb M4 384.3 vc 320.7 bb 311.3 bi 338.8 bi 115.3 db 121.8 vs 122.7 vc 119.9 b 25.7 vc 20.6 bc 20.7 vf 22.3 vb 22.3 vb Variety Seed rate S Variety x Seed rate S Variety x Seed rate S Variety x Seed rate S Variet x Seed ra	G	M_2	305.7 ^{c-j}	292.0 ^{e-k}	$269.8^{\mathrm{f}\text{-l}}$	289.2 ^{cd}	$110.5 \ {\rm f}^{\rm -j}$	109.1 ^{g-k}	72.4 ^{o-q}	97.3 ^d	25.7 ^{a-c}	20.3 ^{c-f}	18.6 ^{d-f}	21.5 ^{ab}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S_2	M_3	321.2 ^{b-h}	299.7 ^{d-k}	$280.3^{\mathrm{f}\text{-l}}$	$300.4^{\rm f-d}$	$128.1^{\mathrm{b-f}}$	111.7 ^{e-i}	92.6 ^{k-n}	110.8 ^{bc}	27.5 ^{ab}	20.9 ^{a-f}	20.1 ^{c-f}	22.8 ^a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		M_4	411.5 ^a	389.2 ^{ab}	310.1 ^{b-i}	370.3 ^a	156.9 ^a	143.0 ^{ab}	129.0 ^{b-e}	143.0 ^a	27.6 ^a	21.1 ^{a-f}	21.1 ^{a-f}	23.3 ^a
		\mathbf{M}_{1}	243.4 ^{h-m}	$266^{\mathrm{f}\text{-m}}$	186.3 ^m	$231.9^{\rm \ f}$	107.7 ^{g-k}	80.1 ^{m-p}	84.5 ^{1-p}	90.8 ^{de}	21.2 ^{a-f}	18.0^{ef}	$16.9^{\rm f}$	18.7 ^b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	q	M_2	$287.7^{f\text{-}k}$	$282.3^{\text{ f-l}}$	$263.7^{\rm f-m}$	277.9 ^{de}	112.5 ^{e-i}	92.9 ^{k-n}	88.3 ¹⁻⁰	97.9 ^d	22.2 ^{a-f}	19.9 ^{c-f}	20.5 ^{c-f}	20.9 ^{ab}
	33	M_3	372 ^{a-e}	$299.3^{d\text{-}k}$	303.7 ^{c-j}	325.0 ^{bc}	113.2 ^{d-h}	89.9 ¹⁻⁰	94.1 ^{j-n}	99.1 ^d	$23.7^{\rm \ a-f}$	19.6 ^{c-f}	21.1 ^{a-f}	21.5 ^{ab}
		M_4	384.3 ^{a-c}	$320.7^{\text{ b-h}}$	311.3 ^{b-i}	338.8 ^{ab}	115.3 ^{d-h}	121.8 ^{c-g}	122.7 ^{c-g}	119.9 ^b	25.7 ^{a-c}	$20.6^{\mathrm{b}\text{-}\mathrm{f}}$	$20.7^{a\text{-}f}$	22.3 ^{ab}
	Variety		328.2 ^a	282.2 ^b	263.1 ^b		118.5	105.2 ^b	85.5 ^c		24.4 ^a	19.4 ^b	19.7 ^b	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Variety x Seed rate			S	Variety x Seed rate				Vari	S			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S_1	338.4 ^a	237.6 ^e	241.8 ^e	272.6 ^b	119.8 ^a	107.0 ^b	70.2 ^e	99.0 ^b	23.3 ^b	18.2 °	19.8 °	20.4 ^b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S	S.	324 4 ^{ab}	317 1 ^{a-c}	281.1 ^{cd}	307.5 ^a	123.6ª	112 4 ^b	89.1 ^d	108.4 ^ª	26.6 ^a	20.5 °	19.4 °	22.2 ^a
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3	\mathbf{D}_2	524.4	517.1	20111			112.1						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3	S ₂ S ₃	321.9 ^{ab}	292.1 ^{b-d}	266.3 ^{de}	293.4 ^{ab}	112.2 ^b	96.2°	97.4 °	101.9 ^b	23.2 ^b	19.5 °	19.8 °	20.8 ^b
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S ₂ S ₃	321.9 ^{ab} Variety	292.1 ^{b-d}	266.3 ^{de}	293.4 ^{ab} M	112.2 ^b Va	96.2°	97.4 °	101.9 ^b M	23.2 ^b Va	19.5 ° riety x Mi	19.8 °	20.8 ^b M
M M3 347.2^{b} 285.1^{ce} 278^{de} 303.4^{b} 123.4^{bc} 111.6^{d} 85.0^{f} 106.7^{b} 24.9^{a} 19.7^{cd} 20.6^{bd} 21.7^{ab} M4 391.3^{a} 327.9^{bc} 293.7^{ce} 337.6^{a} 135.2^{a} 131.9^{ab} 109.7^{d} $126.a^{a}$ 26.0^{a} 20.3^{bd} 20.8^{bd} 22.4^{a} Comparison S.Em± S.Em± S.Em± 0.5^{c} 0.5^{c} Variety (V) 9.5 1.9^{c} 0.4^{c} 0.4^{c} 0.4^{c} Micro (M) 8.1 1.8^{c} 0.7^{c} 0.8^{c} 0.8^{c} 0.8^{c} V x S 11.9^{c} 1.9^{c} 0.8^{c} 0.8^{c} 0.1^{c} 0.8^{c} V x S 11.9^{c} 1.9^{c} 0.8^{c} 0.8^{c} 0.8^{c} 0.8^{c} 0.8^{c} V x S x M 14.1 3.1^{c} 3.1^{c} 1.2^{c} 2.0^{c} 0.8^{c}		S ₂ S ₃ M ₁	321.9 ^{ab} Variety 266.8 ^{d-f}	292.1 ^{b-d} y x Micro 252.1 ^{ef}	266.3 ^{de}	293.4 ^{ab} M 247.8 ^d	112.2 ^b Van 100.7 ^e	96.2 ° riety x Mic 80.7 ^f	97.4 ° cro 66.7 ^g	101.9 ^b M 82.7 ^d	23.2 ^b Va: 23.0 ^{a-c}	19.5 ^c riety x Mie 18.4 ^d	19.8 ^c cro 17.8 ^d	20.8 ^b M 19.7 ^b
M4391.3 a327.9 be293.7 ce337.6 a135.2 a131.9 ab109.7 d125.6 a26.0 a20.3 bed20.8 bed22.4 aComparisonS.Em±S.Em±S.Em±S.Em±S.Em±Variety (V)9.51.90.5Seed (S)6.71.10.4Micro (M)8.11.80.7V x S11.91.90.8V x M14.13.11.2S x M14.13.11.2V x S x M24.45.42.0		S ₂ S ₃ M ₁ M ₂	321.9 ^{ab} Variety 266.8 ^{d-f} 307.6 ^{b-d}	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f}	266.3 ^{de} 224.4 ^f 256.1 ^{ef}	293.4 ^{ab} M 247.8 ^d 275.9 ^c	112.2 ^b Va 100.7 ^e 114.8 ^{cd}	96.2° riety x Mic 80.7 ^f 96.6°	97.4 ° cro 66.7 ^g 80.8 ^f	101.9 ^b M 82.7 ^d 97.4 ^c	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab}	19.5 ° riety x Mie 18.4 ^d 19.3 ^{cd}	19.8 ^c cro 17.8 ^d 19.5 ^{cd}	20.8 ^b M 19.7 ^b 20.8 ^b
ComparisonS.Em±S.Em±Variety (V)9.51.90.5Seed (S)6.71.10.4Micro (M)8.11.80.7V x S11.91.90.8V x M14.13.11.2S x M14.13.11.2V x S x M24.45.42.0		S ₂ S ₃ M ₁ M ₂ M ₃	321.9 ^{ab} Variety 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e}	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de}	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc}	96.2° riety x Mic 80.7 ^f 96.6° 111.6 ^d	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a	19.5 ° riety x Mia 18.4 ^d 19.3 ^{cd} 19.7 ^{cd}	19.8 ° cro 17.8 ^d 19.5 ^{cd} 20.6 ^{b-d}	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab}
Variety (V)9.51.90.5Seed (S)6.71.10.4Micro (M)8.11.80.7V x S11.91.90.8V x M14.13.11.2S x M14.13.11.2V x S x M24.45.42.0		S ₂ S ₃ M ₁ M ₂ M ₃ M ₄	321.9 ^{ab} Variety 266.8 ^{d.f} 307.6 ^{b.d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc}	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{c-e}	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 b Vai 100.7 e 114.8 cd 123.4 bc 135.2 a	96.2 ° riety x Mie 80.7 ^f 96.6 ° 111.6 ^d 131.9 ^{ab}	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mia 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d}	19.8 ° cro 17.8 ^d 19.5 ^{cd} 20.6 ^{b-d} 20.8 ^{b-d}	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
Seed (S)6.71.10.4Micro (M)8.11.80.7V x S11.91.90.8V x M14.13.11.2S x M14.13.11.2V x S x M24.45.42.0	M Compa	S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison	321.9 ^{ab} Variety 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{c-e} Cm±	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 b Van 100.7 e 114.8 cd 123.4 bc 135.2 a	96.2° riety x Mie 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m±	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va: 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mid 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E	19.8 ° cro 17.8 ^d 19.5 ^{cd} 20.6 ^{b-d} 20.8 ^{b-d} m±	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
Micro (M) 8.1 1.8 0.7 V x S 11.9 1.9 0.8 V x M 14.1 3.1 1.2 S x M 14.1 3.1 1.2 V x S x M 24.4 5.4 2.0	M Compa Variety	S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison	321.9 ^{ab} Variety 266.8 ^{d.f} 307.6 ^{b.d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{c-e} Cm± .5	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mia 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E	97.4° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mie 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E 0.	$ \begin{array}{c} 19.8^{\circ} \\ \hline 17.8^{d} \\ 19.5^{\circ d} \\ 20.6^{b \cdot d} \\ 20.8^{b \cdot d} \\ \hline \mathbf{m} \\ 5 \end{array} $	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
V x S 11.9 1.9 0.8 V x M 14.1 3.1 1.2 S x M 14.1 3.1 1.2 V x S x M 24.4 5.4 2.0	M Compa Variety Seed (S	M1 M2 M3 M4	321.9 ^{ab} Variet 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9 6	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{c-e} Cm± .5	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mie 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E 1.	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9 1	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va: 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mid 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E 0. 0.	$ \begin{array}{c} 19.8^{\circ} \\ \hline 17.8^{d} \\ 19.5^{cd} \\ 20.6^{b\cdot d} \\ 20.8^{b\cdot d} \\ \hline \mathbf{m} \pm \\ 5 \\ 4 \end{array} $	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
V x M 14.1 3.1 1.2 S x M 14.1 3.1 1.2 V x S x M 24.4 5.4 2.0	M Compa Variety Seed (S Micro (S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison 7 (V) (M)	321.9 ^{ab} Variet 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9 6 8	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{c-e} Cm± .5 .7	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mid 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E 1. 1. 1.	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9 1 8	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mia 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E 0. 0. 0. 0. 0.	$ 19.8^{\circ} $ cro 17.8 ^d 19.5 ^{cd} 20.6 ^{b-d} 20.8 ^{b-d} m± 5 4 7	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
S x M 14.1 3.1 1.2 V x S x M 24.4 5.4 2.0	M Compa Variety Seed (S Micro (V x S	S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison 7 (V) 5) (M)	321.9 ^{ab} Variet 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9 6 8 11	266.3^{de} 224.4^{f} 256.1^{ef} 278^{de} 293.7^{c-e} $Sm \pm$.5 .7 .1 .9	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mie 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E 1. 1. 1. 1.	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9 1 8 9	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va: 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mid 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E 0. 0. 0. 0. 0. 0. 0.	$ \begin{array}{c} 19.8^{\circ} \\ \hline 17.8^{d} \\ 19.5^{cd} \\ 20.6^{b\cdot d} \\ 20.8^{b\cdot d} \\ \hline m\pm \\ 5 \\ 4 \\ 7 \\ 8 \end{array} $	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
V x S x M 24.4 5.4 2.0	M Compa Variety Seed (S Micro (V x S V x M	S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison 7 (V) 5) (M)	321.9 ^{ab} Variety 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9 6 8 11 12	266.3 ^{de} 224.4 ^f 256.1 ^{ef} 278 ^{de} 293.7 ^{ce} 293.7 ^{ce} 293.7 ^{ce} .1 .9 4.1	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mid 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E 1. 1. 1. 1. 1. 3.	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9 1 8 9 1	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mia 18.4 ^d 19.3 ^{cd} 19.7 ^{cd} 20.3 ^{b-d} S.E 0. 0. 0. 0. 0. 1.	$ \begin{array}{c} 19.8^{\circ} \\ \hline 17.8^{d} \\ 19.5^{cd} \\ 20.6^{b\cdot d} \\ \hline 20.8^{b\cdot d} \\ \hline m\pm \\ 5 \\ 4 \\ 7 \\ 8 \\ 2 \end{array} $	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a
	M Compa Variety Seed (S Micro (V x S V x M S x M	S ₂ S ₃ M ₁ M ₂ M ₃ M ₄ rison 7 (V) 5) (M)	321.9 ^{ab} Variet 266.8 ^{d-f} 307.6 ^{b-d} 347.2 ^b 391.3 ^a	292.1 ^{b-d} y x Micro 252.1 ^{ef} 263.9 ^{d-f} 285.1 ^{c-e} 327.9 ^{bc} S.E 9 6 8 11 12 12 12	266.3^{de} 224.4^{f} 256.1^{ef} 278^{de} 293.7^{c-e} Cm± $.5$ $.7$ $.1$ 1.9 4.1	293.4 ^{ab} M 247.8 ^d 275.9 ^c 303.4 ^b 337.6 ^a	112.2 ^b Var 100.7 ^e 114.8 ^{cd} 123.4 ^{bc} 135.2 ^a	96.2° riety x Mie 80.7 ^f 96.6° 111.6 ^d 131.9 ^{ab} S.E 1. 1. 1. 3. 3.	97.4 ° cro 66.7 ^g 80.8 ^f 85.0 ^f 109.7 ^d m± 9 1 8 9 1 1	101.9 ^b M 82.7 ^d 97.4 ^c 106.7 ^b 125.6 ^a	23.2 ^b Va 23.0 ^{a-c} 23.6 ^{ab} 24.9 ^a 26.0 ^a	19.5 ° riety x Mi 18.4 ^d 19.7 ^{cd} 20.3 ^{b-d} S.E 0. 0. 0. 0. 1. 1. 1.	$ \begin{array}{c} 19.8^{\circ} \\ \hline 17.8^{d} \\ 19.5^{cd} \\ 20.6^{b\cdot d} \\ 20.8^{b\cdot d} \\ \hline \mathbf{m} \\ \mathbf{f} \\ \mathbf{k} $	20.8 ^b M 19.7 ^b 20.8 ^b 21.7 ^{ab} 22.4 ^a

Int. J. Pure App. Biosci. 6 (2): 1615-1622 (2018)

¹and test weight (g) under direct seeded condition during summer

 \mathbf{V}_1

95.5^{i-m}

121.3 ^{c-g}

260.4^{d-f}

Number of grains panicle ⁻¹

 V_3

53.9^r

81.7^{1-p}

 \mathbf{V}_2

76.0^{n-q}

87.9¹⁻⁰

: V_{1} - GGV 0501, V_{2} - RNR15048, V_{3} - BPT 5204 Varieties (V)

 S_{2} - 30 kg ha⁻¹, S_{3} - 35 kg ha⁻¹ Seed Rate(S) : **S₁-** 25 kg ha⁻¹,

Micronutrient (M): M_1 - Control, M_2 - FeSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_3 - ZnSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_4 - FeSO₄ + ZnSO₄ (each to soil @ 25 kg ha⁻¹ + foliar @ 0.5% at 15 and 30 DAS)

Note: The values between the same set of classes for each treatment followed by the same letter are not significantly different under DMRT

ISSN: 2320 - 7051

V₃

18.7 ^{c-f}

 $19.5^{\,\mathrm{c}\text{-}\mathrm{f}}$

S x M

19.4^{ab}

20.1^{ab}

Test weight (g)

 \mathbf{V}_2

 17.4^{f}

17.7^{ef}

 V_1

22.1^{a-f}

 $23.0^{\,\mathrm{a}\text{-}\mathrm{f}}$

S x M

75.1^f

97.0^d

Shubha *et al*

 M_1

 M_2

VxSxM

Table 2: Effect of genotypes, seed rates and micronutrients on panicles m⁻², number of grains panicle

Shubha *et al*

Int. J. Pure App. Biosci. 6 (2): 1615-1622 (2018)

ISSN: 2320 - 7051

Table 3: Effect of genotypes, seed rates and micronutrients on	grain yield, straw yield and harvest index								
under direct seeded condition									

N. G. M.			Grain yie	ld (kg ha ⁻¹)		Straw yield (kg ha ⁻¹)				Harvest index				
VXX	5 X M	V_1	\mathbf{V}_2	V_3	S x M	\mathbf{V}_1	\mathbf{V}_2	V_3	S x M	\mathbf{V}_1	\mathbf{V}_2	V_3	S x M	
	M_1	4714 ^{d-h}	3513 ^j	4095 ^{h-j}	4107 ^e	4909 ^{n-p}	5692 ⁱ⁻ⁿ	5055 ^{1-p}	5219 ^h	0.49 ^{ab}	0.38 ^{gh}	0.45 ^{a-f}	0.44 ^{a-c}	
G	M_2	4857 ^{d-h}	3989 ^{h-j}	$4295^{f\text{-}j}$	4380 ^{de}	5580 ^{j-n}	5908 ^{h-m}	5578 ^{j-n}	5687 ^{eg}	0.47^{ab}	$0.40^{\text{ e-h}}$	0.43 ^{b-g}	0.44 ^{a-c}	
S ₁	M_3	5626 ^{a-d}	4578 ^{e-i}	$4327^{\mathrm{f}\text{-}\mathrm{j}}$	4844 ^{b-d}	$6026^{\mathrm{f}\text{-}k}$	6090 ^{e-k}	6107 ^{e-k}	6074 ^{de}	0.49 ^{ab}	0.43 ^{b-g}	0.42 ^{c-h}	0.44 ^{a-c}	
	M_4	5843 ^{a-c}	4924 ^{c-h}	4337 ^{f-j}	5035 ^{ab}	6681 ^{b-h}	7085 f-d	6550 ^{b-i}	6772 ^{bc}	0.47 ^{a-d}	0.41 ^{d-h}	0.40 ^{e-h}	0.43 ^{a-c}	
a	\mathbf{M}_{1}	$5173^{\text{ f-g}}$	4184 ^{g-h}	$4140^{h\text{-}j}$	4499 ^{c-e}	7043 ^{b-e}	4273 ^p	4656 ^{op}	5324 ^{f-h}	0.42 ^{c-h}	0.49 ^{ab}	0.47 ^{a-d}	0.46 ^a	
	M_2	5981 ^{ab}	4507 ^{e-j}	4152 ^{h-j}	4880 ^{b-d}	7031 ^{b-e}	5008 ^{m-p}	5270 ^{lp}	5770 ^{ef}	0.46 ^{a-e}	0.47 ^{a-d}	0.44 ^{a-g}	0.46 ^a	
S_2	M_3	6215 ^a	$4858^{d\text{-}h}$	4337 ^{f-j}	5137 ^{ab}	7089 ^{b-d}	6941 ^{b-f}	5409 ^{k-o}	6480 ^{cd}	0.47 ^{a-d}	0.41 ^{d-h}	0.44 ^{a-g}	0.44 ^{a-c}	
	M_4	6277 ^a	5400 ^{a-e}	4580 ^{e-i}	5419ª	8241 ^a	7407 ^b	7246 ^{bc}	7631ª	0.43 ^{b-g}	0.42 ^{c-h}	$0.39^{\mathrm{f}\text{-}\mathrm{h}}$	0.41 °	
	\mathbf{M}_{1}	4519 ^{e-i}	3639 ^{ij}	$4127^{h\text{-}j}$	4095 °	4634 ^p	6434 ^{c-j}	4131 ^p	5066 ^h	0.494 ^{ab}	0.36 ^h	0.50 ^a	0.45 ^{ab}	
G	M_2	$5237^{\rm \ b-f}$	3993 ^{h-j}	4147 ^{h-j}	4459 ^{c-e}	5678 ⁱ⁻ⁿ	6444 ^{c-j}	5974 ^{g-1}	6032 ^{de}	0.48 ^{a-c}	0.38 ^{gh}	0.41 ^{d-h}	0.42 ^{bc}	
S ₃	M_3	5880 ^{ab}	4659 ^{d-h}	$4270^{\mathrm{f}\text{-}\mathrm{j}}$	4936 ^{a-c}	6802 ^{b-h}	6742 ^{b-h}	6350 ^{c-k}	6631 ^{bc}	0.46 ^{a-e}	0.41 ^{d-h}	0.40 ^{e-h}	0.42 ^{bc}	
	M_4	5966 ^{ab}	4899 ^{d-h}	4435 ^{e-j}	5100 ^{ab}	7197 ^{bc}	$7198^{d\text{-}k}$	6874 ^{b-g}	7090 ^b	$0.45^{\text{ a-f}}$	0.40 ^{e-h}	$0.39^{\mathrm{f}\text{-}\mathrm{h}}$	0.42 ^{bc}	
Variety		5524 ^a	4429 ^b	4270 ^b		6409 ^a	6269 ^a	5767 ^b		0.46 ^a	0.41 ^b	0.42 ^b		
		Variety x Seed rate			S	Var	Variety x Seed rate			Var	iety x Seed	rate	S	
	S_1	5260 ^b	4252 ^d	4264 ^d	4592 ^b	5799 ^{cd}	6193 °	5823 ^{cd}	5938 ^b	0.48 ^a	$0.41^{\text{ de}}$	0.42^{cd}	0.43 ^a	
S	S_2	5912 ^ª	4737 °	4302 ^d	4984 ^a	7351 ^a	5907 ^{cd}	5645 ^d	6301 ^a	0.45 ^{bc}	0.45 ^{bc}	0.44 ^c	0.44 ^a	
	S_3	5401 ^b	4298 ^d	4245 ^d	4648 ^b	6078 ^{cd}	6705 ^b	5832 ^{cd}	6205 ^{ab}	0.47 ^{ab}	0.39 ^e	0.44 ^{cd}	0.43 ^a	
		Variety x Micro			М	Va	ariety x Mi	cro	М	Variety x Micro			М	
	M_1	4802^{cd}	3779 ^g	4121 ^{fg}	4234 °	5528 °	5466 °	$4614^{\rm \ f}$	5203 ^d	0.47 ^a	0.41 ^{cd}	0.47 ^a	0.45 ^a	
	M_2	5358 ^b	4163 ^{fg}	4198 ^{e-g}	4573 ^b	6096 ^d	5785^{de}	5608 dc	5830 °	0.47 ^a	0.42 ^{b-d}	0.43 ^{bc}	0.44 ^{ab}	
M	M_3	5907 ^{ab}	4699 ^{c-e}	4311 ^{d-f}	4972 ^{ab}	6639°	6591 °	5956 ^{dc}	6395 ^b	0.47 ^a	0.42 ^{b-d}	$0.42^{\mathrm{f}\text{-d}}$	0.43 ^b	
	M_4	6029 ^a	5074 ^{bc}	4451 ^{d-f}	5185 ^a	7373 ^a	7230 ^{ab}	6890 ^{bc}	7164 ^a	0.47 ^a	0.41 ^{cd}	0.39 ^d	0.41 ^c	
Compa	rison		S.E	lm±		S.Em±				S.Em±				
Variety	y (V)		1	04		109				0.010				
Seed (S	5)		7	'3		87				0.011				
Micro	(M)		9	96		94				0.009				
V x S			1:	26			152				0.019			
V x M			1	67			1	54			0.0)15		
S x M			1	67			1	54			0.0)15		
VxSxM			2	90			2	84			0.026			

Varieties (V) : V₁- GGV 0501, V₂- RNR15048 (summer), V₃- BPT 5204

Seed Rate(S) : S_{1} - 25 kg ha⁻¹, S_{2} - 30 kg ha⁻¹, S_{3} - 35 kg ha⁻¹

Micronutrient (M): M_1 - Control, M_2 - FeSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_3 - ZnSO₄ (Soil @ 25 kg ha⁻¹+ foliar @ 0.5% twice at 15 and 30 DAS)

 M_4 - FeSO₄ + ZnSO₄ (each to soil @ 25 kg ha⁻¹ + foliar @ 0.5% at 15 and 30 DAS)

Note: The values between the same set of classes for each treatment followed by the same letter are not significantly different under DMRT

REFERENCES

- Cheema, N. M., Noorullah and Khan, N. U., Effect of Zn on the panicle structure and yield of coarse rice, IR-6. *Pakistan J. Agric. Res.*, **19** (4): 33-37 (2006).
- Gill, J. S. and Walia, S. S., Growth and grain yield of direct seeded basmati rice as influenced by foliar feeding of micronutrients. *Agriculture for*

ISSN: 2320 - 7051

Sustainable Development, **3** (1): 41-46 (2015).

Shubha *et al*

- Gill, M. S., kumar, P. and kumar, A., Growth and yield of direct-seeded rice (*Oryza sativa*) as influenced by seeding technique and seed rate under irrigated conditions, *Indian J. Agron.*, **51** (4): 283-287 (2006).
- Gomez, K. A. and Gomez, A. A., Statistical Procedure for Agricultural Research, Second Ed. *Wiley India* (P) Ltd., New Delhi, p. 680 (2010).
- Gopal, R., Jat, R. K., Malik, R. K., Kumar, V., Alam, M. M., Jat, M. L., Mazid, M. A., Saharawat, Y. S., McDonald, A. and Gupta., Direct dry-seeded rice production technology and weed management in rice based systems. Technical Bulletin. *International Maize and Wheat Improvement Center*, New Delhi, India, p. 28 (2010).
- Jadhav, K. T., Lokhande, D. C. and Asewa, B. V., Effect of ferrous and zinc nutrient management practices on rice under aerobic condition. *Adv. Res. J. Crop Improv.*, 5(2): 131-135 (2014).
- Ramana, A.V., Reddy, S. D. and Reddy, K. R., Influence of mulching and micronutrient managementpractices on upland rice. *Karnataka J. Agric. Sci.*, 19(4): 785-788 (2006).
- Rekha, B., Jayadeva, H. M., Kombali, G., Nagaraju, G. B., Mallikarjuna and Geethakumari. A., Growth and yield of aerobic rice grown under drip fertigation. *The Ecoscan*, 9(1&2): 435-437 (2015).

- Saha, B., Saha, S., Hazra, G. C., Saha, S., Basak, N., Anupam Das and Mandal, B., Impact of zinc application methods on zinc concentration and zinc-use efficiency of popularly grown rice (*Oryza sativa*) cultivars. *Indian J. Agron.*, 60(3): 391-402 (2015).
- Wu, Y., Xin He, P., Chang Hui, Ge, Xun, S. Jian, Liang, S., and Wan Gen, K., A study on suitable sowing date and sowing rate of a new late *Japonica* hybrid rice combination Bayou 52 in no-tillage and direct seeding cultivation. Hybrid Rice, 23: 48–50 (2008).
- Yadav, A., Singh, D. K., Sumit C., Kumar, A. and Nath, A., Growth and yield attributes of direct seeded aerobic rice (*Oryza sativa* L.) as influenced by seed rate and varieties. *Int. J. Curr. Microbiol. App. Sci.*, 6(2): 868-873 (2017).
- 12. Singh, Y., Brar, N. K., Humphreys, E., Singh, Bijay, and Timsina, J., Yield and nitrogen use efficiency of permanent bed rice-wheat systems in northwest India: Effect of N fertilization, mulching and crop establishment method. In Permanent Beds and Rice-Residue Management for Rice-Wheat Systems in the Indo-Gangetic Plain. ACIAR Proceedings No. 127 (E. Humphreys and C. H. Roth, Eds.), Australian Centre for International Agricultural Research, Canberra, Australia, www.aciar.gov.au/ publication/ term/ 18 pp. 62–78 (accessed 17 November 2008) (2008).